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Mathematical Optimization

General Problem Formulation and Classification

Optimization is important!

I Define f : S 7−→ R — objective function, x — vector of control
parameters

I Find f ∗ ∈ R, x∗ ∈ S:

f ∗ = f (x∗) = min
x∈S

f (x)

I Classification:
I Parameter types: on/off, discrete, continuous, functions of a certain type,

etc.
I Dimensionality: number of control parameters
I Objective function number: single and multi-objective
I Presence of constraints: constrained and unconstrained
I Presence of noise: noise could be present in parameters and in the

objective function values
I Properties of the objective function: modality, convexity, time-dependence,

continuity, differentiability, smoothness, separability, etc
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Introduction to Evolutionary Algorithms

Introduction

What is Evolutionary Algorithm?

I Family: heuristic, stochastic methods
I Inspiration: computational analogy of the adaptive systems from

nature based on the principle of the evolution via a natural selection
(C.Darwin, 1859)

I Idea: population of individuals undergoes selection in the presence of
variation-inducing operators such as mutation and recombination
(crossover). The fitness function is used to evaluate individuals.
Reproductive success varies with fitness

I Applicability: does not guarantee the best solution, but often finds it or
at least with a partially optimal solution (good fit). Not a rigorous
method, but good in practice!
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Introduction

Evolutionary Algorithm (General Form)

Generate initial population, evaluate fitness

While stop condition not satisfied do

Produce next population by

Selection

Recombination

Evaluate fitness

End while
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Introduction

Why

1. Can be extended to constrained optimization
2. Capable of both exploration (broad search) and exploitation (local

search)
3. In practice often find global extrema
4. Can generate/find unforeseen solutions (artificial design)
5. For multi-objective problems, return a set of satisfactory solutions.

Useful to approximate Paretto front
6. Well suited for supporting design and optimization phases of decision

making
7. Moderate computational cost
8. Relative simplicity of technical implementation and modification
9. Demonstrated record of successful applications
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How and When

To design or select an EA for the problem:
1. Effectively encode solutions of a given problem to chromosomes in

EA.
2. Meaningfully compare the relative performance (fitness) of solutions.

EAs are useful and efficient when
1. The search space is large, complex or poorly understood
2. Domain knowledge is scarce or expert knowledge is difficult to encode

to narrow the search space
3. Objective function does not possess any “nice” properties, analytic

tools are not applicable
4. Traditional search methods fail or are prohibitively computationally

expensive
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How in More Details

1. Select EA flavour.
2. Define a representation:

I real number 1D, 2D, and 3D arrays
I 1D, 2D, and 3D binary strings
I lists
I trees

3. Define genetic operators:
I Crossover
I Mutation

4. Define the objective function.
5. Set the algorithm parameters (probabilities, rates, thresholds, flags).

In reality steps are interconnected!
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Introduction

Critical Factors

I Might need extensive fine-tuning for the problem
I Need to keep evolutionary pressure in balance (similar to annealing

schedule for Simulated Annealing)
I Possibility to choose a “right” representation but “wrong” genetic

operator or vice versa
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Record of Successful Applications

I Optimization: numerical optimization, combinatorial optimization
problems (TSP), circuit design, timetabling and scheduling, video and
sound quality optimization, optimal molecule configurations

I Automatic Programming or Evolutionary Computing: evolving computer
programs for specific tasks (also filters for particle collision
experiments), cellular automates, sorting networks

I Machine and Robot Learning: classification and prediction, neural
networks, evolving rules for learning classifier systems and symbolic
production systems, design and control in robotics

I Economics: modelling processes of innovation, the development of
bidding strategies

I Ecology and Biology: biological arms races, host-parasite co-evolution,
symbiosis and resource flow in nature, configuration applications,
protein folding and protein/ligand docking (GARAGe)

I Artificial Life: evolution of intelligence and cooperation
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Introduction

Why Do They Work?

I GA: John Holland, 1995, “Adaptation in Natural and Artificial Systems”:
sampling hyperplane partitions in search space (being implemented
properly)

I ES: Günter Rudolf, 1997, “Convergence Properties of Evolutionary
Algorithms”: modelling EAs with Markov chains, convergence to global
optimum can be proven assuming infinite time if elitism is in place;
convergence speed needs additional assumptions about objective
function
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Example Statistics

(a) Max/avg/min func-
tion values, normal axis

(b) Max/avg/min func-
tion values, logarithmic
axis

(c) Estimated average
Euclidean distance be-
tween population mem-
bers

(d) Min function value
improvement (absolute
value)
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GATool Algorithm

Randomly generate initial population, set predefined members, if any

Calculate objective function values, scale to fitnesses

Update statistics

While any of the stop conditions is not satisfied do

Perform Roulette Wheel/Stochastic Uniform/Tournament Selection

Generate next population

Produce mutants by Uniform/Gaussian Mutation

Produce children by Continuous Crossover

Copy elite members

Replace old population with newly generated

Calculate objective function values, scale to fitnesses

Update statistics

End while
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Sphere Function: Definition
I Definition: f (x) =

∑n
i=1 x2

i
I Search domain: xi ∈ [−6, 6], i = 1, 2, . . . ,n
I Number of local minima: no local minima, only global one
I The global minimum: x∗ = (0, . . . , 0), f (x∗) = 0
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Sphere Function: Algorithm Parameters

I N = 10
I Population size = 1000
I Initial population size = 0
I Reproduction params: Number of elite = 10, Mutation rate = 0.2
I Crossover params: Heuristic, Ratio = 0.8, Randomize On
I Fitness scaling: Rank
I Selection: Roulette
I Mutation params: Uniform, Gene Mutation Probability = 0.01
I Areal: [−6.01250509, 6.01250509]×N , Killing On
I Max generations = 100
I Best value = 0.1984614290024165E-05
I Time = 0h 4m 2s
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Sphere Function: Optimization Process
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Rastrigin’s Function: Definition
I Definition: f (x) = 10n +

∑n
i=1

(
x2

i − 10 cos(2πxi)
)

I Search domain: xi ∈ [−6, 6], i = 1, 2, . . . ,n
I Number of local minima: several local minima
I The global minimum: x∗ = (0, . . . , 0), f (x∗) = 0



Evolutionary Optimization Methods for Accelerator Design

Introduction to Evolutionary Algorithms

Introduction

Rastrigin’s Function: Algorithm Parameters

I N = 10
I Population size = 1000
I Initial population size = 0
I Reproduction params: Number of elite = 10, Mutation rate = 0.2
I Crossover params: Heuristic, Ratio = 0.8, Randomize On
I Fitness scaling: Rank
I Selection: Roulette
I Mutation params: Uniform, Gene Mutation Probability = 0.01
I Areal: [−6.01250509, 6.01250509]×N , Killing On
I Max generations = 100
I Best value = 0.1001886961046239E-01
I Time = 0h 4m 43s
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Rastrigin’s Function, Generation = 1
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Rastrigin’s Function, Generation = 10
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Rastrigin’s Function, Generation = 60
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Rastrigin’s Function: Optimization Process
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Rastrigin’s Function: Different Params — Different
Results

Scaling Elite Mutation Crossover Result Time
Rank 10 Unif(0.01) Heur(0.8, 1) 0.196 0h 4m 27s
Rank 10 Gauss(1,1) Heur(0.8, 1) 3.082 0h 4m 25s
Rank 10 Unif(0.01) Heur(0.8, 0) 0.100E-01 0h 4m 43s
Rank 10 Unif(0.1) Heur(0.8, 1) 0.593E-02 0h 4m 30s
Rank 0 Unif(0.1) Heur(0.8, 1) 0.125E-03 0h 4m 29s

Linear 0 Unif(0.1) Heur(0.8, 1) 7.4327 0h 4m 1s
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CosExp Function: Definition
I Definition: f (x) = cos(x1) cos(x2)− 2 ∗ e(−500((x1−1)2+(x2−1)2))

I Search domain: xi ∈ [−6, 6], i = 1, 2
I Number of local minima: many local minima
I The global minimum: x∗ = (1, . . . , 1), f (x∗) = −1.7081
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CosExp Function: Algorithm Parameters

I N = 2
I Population size = 1000
I Initial population size = 0
I Reproduction params: Number of elite = 5, Mutation rate = 0.2
I Crossover params: Heuristic, Ratio = 0.8, Randomize On
I Fitness scaling: Rank
I Selection: Roulette
I Mutation params: Uniform, Gene Mutation Probability = 0.1
I Areal: [−6.01250509, 6.01250509]×N , Killing On
I Max generations = 100
I Best value = -1.708176752160731
I Time = 0h 0m 49s
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CosExp Function: Optimization Process
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Rosenbrock’s Function: Definition
I Definition: f (x) =

∑n−1
i=1

(
100

(
x2

i − xi+1
)2 + (xi − 1)2

)
I Search domain: xi ∈ [−5, 10], i = 1, 2, . . . ,n
I Number of local minima: several local minima
I The global minimum: x∗ = (1, . . . , 1), f (x∗) = 0
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Rosenbrock’s Function: Algorithm Parameters

I N = 10
I Population size = 1000
I Initial population size = 0
I Reproduction params: Number of elite = 10, Mutation rate = 0.2
I Crossover params: Heuristic, Ratio = 0.8, Randomize On
I Fitness scaling: Rank
I Selection: Roulette
I Mutation params: Uniform, Gene Mutation Probability = 0.01
I Areal: [−6.01250509, 6.01250509]×N , Killing On
I Max generations = 150
I Best value = 7.940674306488130
I Time = 0h 6m 46s
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Rosenbrock’s Function: Optimization Process
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Accelerator Design Applications

Brief Introduction

Beam — ensemble of particles with similar coordinates
I Laboratory:

z(t) = (x,px , y,py , z,pz)T

I Curvilinear:

z(s) =


x

a = px/p0

y
b = py/p0

l = k(t − t0)
δ = (E − E0)/E0


z(0) — reference particle (often fixed point)



Evolutionary Optimization Methods for Accelerator Design

Accelerator Design Applications

Brief Introduction

Equations of motion

dp
dt

= q (E + v× B)

Equations of motion in curvilinear coordinates:

x′ = a(1 + hx)
p0

ps

y ′ = b(1 + hx)
p0

ps

a′ =
(

1 + η

1 + η0

p0

ps

Ex

χe0
+ b

Bz

χm0

p0

ps
−

By

χm0

)
(1 + hx) + h

p0

ps

b′ =
(

1 + η

1 + η0

p0

ps

Ey

χe0
+

Bx

χm0
− a

Bz

χm0

p0

ps

)
(1 + hx)

l′ =
(

(1 + hx)
1 + η

1 + η0

p0

ps
− 1
)

k
v0

δ′ = 0
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Accelerator Design Applications

Brief Introduction

Map methods

dx
dt

= f(x, t), x(0) = xi

I FlowMT establishes a mapping between the initial position xi at the
t = 0 and the final position xf that the object assumes at the time T :

xf =MT (xi).

Especially useful for periodic systems (circular particle accelerators!)
I MapMT is often hard or impossible to obtain in closed form, so it

calculated via numerical integration of the equations of motion. If the
function f is only weakly nonlinear, can use Taylor expansion.

I Differential Algebra allows to obtain it inexpensively and automatically
to any order.

I Composition property: if we have have two maps: Mt0,t1 Mt1,t2 , then

Mt0,t2 =Mt1,t2 ◦Mt0,t1 (1)
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Brief Introduction

Map methods, COSY Infinity notation

xf = (x|x)xi + (x|a)ai + (x|y)yi + (x|b)bi + (x|l)li + (x|δ)δi

+ (x|xx)x2
i + (x|xa)xiai + (x|xy)xiyi + (x|xb)xibi + . . . .

xf =
∑

(x|xi1 ai2 y i3 bi4 li5δi6 )xi1
i ai2

i y i3
i bi4

i li5
i δ

i6

af =
∑

(a|xi1 ai2 y i3 bi4 li5δi6 )xi1
i ai2

i y i3
i bi4

i li5
i δ

i6

yf =
∑

(y|xi1 ai2 y i3 bi4 li5δi6 )xi1
i ai2

i y i3
i bi4

i li5
i δ

i6

bf =
∑

(b|xi1 ai2 y i3 bi4 li5δi6 )xi1
i ai2

i y i3
i bi4

i li5
i δ

i6

lf =
∑

(l|xi1 ai2 y i3 bi4 li5δi6 )xi1
i ai2

i y i3
i bi4

i li5
i δ

i6

af =
∑

(a|xi1 ai2 y i3δi4 li5δi6 )δi1
i ai2

i y i3
i bi4

i li5
i δ

i6
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Accelerator Design Applications

Quadrupole Triplet Telescope Design

Problem Description

I Strong focusing by quadrupoles (magnetic lens) — main element of
modern accelerators

I Linear map (matrix) — linear optics properties, combination — matrix
multiplication

I Stigmatic (simultaneous) imaging, or point-to-point system, important
for collider IR

I Smallest system to achieve stigmatic imaging — quadrupole triplet,
demo in demo.fox

MQ .1 -q1 .025 ;

DL .06 ;

MQ .1 q2 .035 ;

DL .06 ;

MQ .1 -q1 .025 ;

I Map methods of COSY Infinity — arbitrary map elements access
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Quadrupole Triplet Telescope Design

Problem Description (cont.)

If x — position of the ray, m — its slope

M =
(

(x, x) (x,m)
(m, x) (m,m)

)
and (

xf

mf

)
=
(

(x, x) (x,m)
(m, x) (m,m)

)(
xi

mi

)
(2)

Imaging systems is an optical systems: final position of a ray is independent
of its initial angle and depends only on the initial position, hence for them

(x,m) = 0

For quadrupole lens and in (x-a) and (y-b) planes stigmatic imaging
condition is then:

(x,a) = (y,b) = 0
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Quadrupole Triplet Telescope Design

Problem Formulation

I Map is calculated by COSY Inifinity
I Objective function to be minimized is

f (q1,q2) = |(x|a)|+ |(y|b)| ≥ 0, ∀q1,q2,

and we are interested in solutions that bring it to 0.
I 4 solutions. Conventional methods require initial guesses to find all of

them
1. q1 ≈ 0.452, q2 ≈ 0.58,
2. q1 ≈ 0.288, q2 ≈ 0.504,
3. q1 ≈ −0.288, q2 ≈ −0.504,
4. q1 ≈ −0.452, q2 ≈ −0.58.
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Quadrupole Triplet Telescope Design

Objective Function
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Quadrupole Triplet Telescope Design

Solution 1

(e) (x-z) projection (f) (y-z) projection
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Quadrupole Triplet Telescope Design

Solution 2

(g) (x-z) projection (h) (y-z) projection
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Quadrupole Triplet Telescope Design

Solution 3

(i) (x-z) projection (j) (y-z) projection
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Quadrupole Triplet Telescope Design

Solution 3

(k) (x-z) projection (l) (y-z) projection
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Quadrupole Triplet Telescope Design

Results

Search space S = [−10, 10]× [−10, 10], population size = 100*dimension =
200

# Runs Solution found (%)
1 2 3 4

200 12.0 46.5 36.0 5.5
1000 9.0 46.9 37.0 7.1
3000 4.7 31.3 60.3 3.7
10000 8.18 47.27 38.19 6.36
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Quadrupole Triplet Telescope Design

Conclusions

I GATool was able to find one solution every run, all solutions were found
at least once on 200 runs

I GATool was able to find really sharp minima with almost no human
intervention (human time is expensive!)

I Established method is not limited to linear map elements and simple
structures
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Normal Form Defect Function Optimization

Problem Description
Normal Form Defect Function is a tool for rigorous studies of the circular
accelerator stability. In Normal Form coordinates particles follow almost
perfect circles around a fixed point. NFDF measures this non-perfection
(I — invariants of motion):

d = max(I (M)− I )

Phase space trajectories in FODO cell, obtained for 1000 turns by applying
one turn map to the vector with initial coordinates 1000 times; in

conventional (left) and normal form (right) coordinates
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Normal Form Defect Function Optimization

Problem Description (cont.)

I Rigorous estimations of the stability ranges for perturbed motion exist,
but allow predictions of stability only for very small perturbations and
are totally dominated by realistic construction errors.

I Can estimate stability for a finite, but still practically useful, time,
applying principles established by Nekhoroshev

I Divide the normal form coordinate space for each degree of freedom
into a set of rings such that in each of them motion is almost circular
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Problem Description (cont.)
If for the ring n the defect is not larger than ∆rn, then all particles launched
from ring (n − 1) need to make at least

Nn =
rn − rn−1

∆rn

turns before they reach the n-th ring. Then min number of turns inner circle
to get from rmin (initial region) to the rmax

rmin = r1 < r2 < · · · < rn = rmax.

If maximal defects on each of the rings ∆ri, i = 2,n

N =
n∑

i=2

ri − ri−1

∆ri
.

Usually ∆ri are small⇒ motion stability can be assured for a large number
of turns.
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Motivation

I Need tight and rigorous bounds for ∆ri, served as a motivation for
COSY-GO. One more COSY-GO + GATool hybridization test

I In practice, NFDFs are multi-dimensional multi-modal polynomials of
high order, with many of the high-order elements cancel each other,
behaviour of those functions is highly oscillatory and they quickly grow
with radii. Thus they pose substantial difficulties for conventional
optimization methods. Good test functions
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Synthetic, 5th order, 6-dimenstional

[ 0.499999999E-001, 0.100000001 ] [ -3.14159266, 3.14159266 ]

[ 0.499999999E-001, 0.100000001 ] [ -3.14159266, 3.14159266 ]

[ 0.499999999E-001, 0.100000001 ] [ -3.14159266, 3.14159266 ]

Range estimate: 0.5 · 10−4
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Results

Method Time (s) Max Value Difference with TM method
TM method 256 x 32971 - [-, -]
Naive Sampling 109 0.209075292E-4 [1.28294580E-5, 1.28294626E-5]
GATool, pop=60 17 0.327416142E-4 [9.95373092E-7, 9.95377677E-7]
GATool, pop=180 83 0.319524687E-4 [1.78451855E-6, 1.78452314E-6]
GATool, pop=300 300 0.332044502E-4 [5.32537049E-7, 5.32541634E-7]
GATool, pop=600 378 0.331694477E-4 [5.67539577E-7, 5.67544162E-7]
GATool, pop=1000 553 0.332085478E-4 [5.28439469E-7, 5.28444054E-7]
GATool, pop=1200 613 0.336515785E-4 [8.54087318E-8, 8.54133164E-8]
GATool, pop=2000 3459 0.337010630E-4 [3.59242826E-8, 3.59288671E-8]

1Wall clock time
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Realistic, 7th order, 4-dimenstional (Tevatron map,
courtesy of P.Snopok)

[ 0.199999999E-004, 0.400000001E-004 ] [ -3.14159266, 3.14159266 ]

[ 0.199999999E-004, 0.400000001E-004 ] [ -3.14159266, 3.14159266 ]
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Results

Method Time (s) Max Value Difference with TM method
TM method 1024 x 9352 - [-, -]
Naive Sampling 46 0.384215054E-18 [4.01596187E-22, 7.11441777E-14]
GATool, pop=40 5 0.380347985E-18 [4.26866555E-21, 7.11441816E-14]
GATool, pop=200 18 0.382665745E-18 [1.95090547E-21, 7.11441793E-14]
GATool, pop=400 75 0.384126132E-18 [4.90518103E-22, 7.11441778E-14]
GATool, pop=600 177 0.384406960E-18 [2.09690285E-22, 7.11441775E-14]
GATool, pop=800 117 0.384035970E-18 [5.80680790E-22, 7.11441779E-14]
GATool, pop=1000 230 0.384644775E-18 [-2.81241401E-23, 7.11441773E-14]

2Wall clock time
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Normal Form Defect Function Optimization

Conclusions

I GATool is fast and efficient enough to be used for cutoff updates with
COSY-GO

I GATool is efficient on “nasty” functions
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Neutrino Factory Front End Design

Muon Accelerators: Neutrino Factory (oder design)
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Accelerator Design Applications

Neutrino Factory Front End Design

Muon Accelerators: Neutrino Factory (Study 2a)
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Accelerator Design Applications

Neutrino Factory Front End Design

Muon Accelerators: Muon Collider
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Neutrino Factory Front End Design

Initial Beam

Distribution of particles energies 12m from the target calculated by MARS,
Etotal = E0 + T , where E0 is a rest energy (105.6 MeV for muons), T —

kinetic energy
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Neutrino Factory Front End Design

Front End

The baseline Front End schematics from the latest International Scoping
Study
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Accelerator Design Applications

Neutrino Factory Front End Design

Problem

I Control parameters (fields, positions, materials, etc)
I R&D: find optimal parameters as to satisfy requirements on:

I Capture: Matching Emittance (phase space volume) to Acceptance
I Maximize production: muons survived and captured
I Minimize cost (length, fields, frequencies,. . . )
I Set of optimal designs to choose from
I . . .
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Neutrino Factory Front End Design

Methodology

I Number of survived particles within acceptance — objective function
I COSYInfinity + GATool — optimizer (population size = 250)
I ICOOL + ECALC9 — simulation code (2000 particles, 0.4hrs, PIV) and

production analysis
I Perl — driver that controls execution and “glues” programs together
I Short version of Front End design from Neuffer, cooling section for

optimization
I Varied control parameters:

I RF frequency in cooling section (also influences the following accelerator
section): νrf,cool ∈ [200, 204] MHz.

I RF field gradient in cooling section: Vrf,cool ∈ [12, 20] MV/m.
I RF field phase in cooling section: ϕrf,cool ∈ [0, 360] degrees.
I Central momentum in the first 4 matching sections of the cooling channel:

pc,match_cool ∈ [0.22, 0.24] GeV/c.
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Neutrino Factory Front End Design

Methodology (cont.)

I Acceptance estimate:
I minimum and maximum pz : 0.100 GeV/c and 0.300 GeV/c,

correspondingly;
I transverse acceptance cut: 30E-3 m·rad;
I longitudinal acceptance cut: 0.25 m·rad;
I RF frequency for the bucket calculation set to a value used by RF cavities

of the cooling section (on of the control parameters).



Evolutionary Optimization Methods for Accelerator Design

Accelerator Design Applications

Neutrino Factory Front End Design

Results

Parameters νrf,cool Vrf,cool ϕrf,cool pc,match_cool n2 (n2/2000) n2 (n2/8000)
[MHz] [MV/m] [degrees] [GeV/c] particles particles

reference parameters 201.25 18.00 30.000 0.220 498 (0.249) 1740 (0.218)
3rd opt. run, 6th best 201.46 17.77 11.320 0.229 480 (0.240) 1791 (0.224)
3rd opt. run, best 201.40 17.06 12.648 0.226 492 (0.246) 1782 (0.223)
1st opt. run, best 200.55 17.10 26.970 0.220 467 (0.234) 1780 (0.222)
3rd opt. run, 5th best 201.28 17.76 12.457 0.226 484 (0.242) 1773 (0.222)
3rd opt. run, 3rd best 201.47 17.67 13.470 0.228 485 (0.243) 1762 (0.220)
3rd opt. run, 2nd best 201.42 17.68 12.555 0.226 486 (0.243) 1750 (0.219)
3rd opt. run, 7th best 201.34 17.68 12.020 0.226 479 (0.240) 1746 (0.218)
2nd opt. run, 2nd best 201.24 18.91 20.520 0.228 471 (0.236) 1714 (0.214)
3rd opt. run, 4th best 201.48 17.75 11.860 0.227 485 (0.243) 1669 (0.209)
2nd opt. run, best 201.20 18.88 22.477 0.230 497 (0.249) 1643 (0.205)
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COSY++

COSY Infinity

I Scientific computing code based on Differential Algebra (DA) and Taylor
Model (TM) methods

I Primary applications: Beam Theory, Accelerator Design, Rigorous
Computing, Rigorous Integration and Optimization, high-order
Automatic Differentiation,

I Features: arbitrary order for maps of the dynamical systems,
parameter-dependent maps, no approximations in motion or field
description, Normal Form methods, fast fringe field models extensive
library of standard elements, flexible input language (COSYScript) with
built-in optimization syntax and graphics output

I Large user base: > 1000 as of 2004

Available at www.cosyinfinity.org

www.cosyinfinity.org
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COSY++

COSY++

I New file inclusion mechanism for increased modularity
I Macroprogramming with Perl from COSYScript via Active Blocks
I Enhanced command-line interface
I GATool
I Library of convenience functions including vector operations similar to

MatLab
I Automatic conversion of the old-syntax scripts
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Summary

Summary

I GATool framework for the continuous optimization of the real-valued
functions is implemented in COSY Infinity and tested

I GATool application on various Accelerator Design problems is studied,
its usefulness is verified on test and real-life problems; potentially more
applications

I Neutrino Factory Front End optimization is performed, practically useful
results obtained, general framework for the Front End optimization is
suggested, implemented and tested
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Backup Slides

GATool

Representation and Fitness Scaling

I Representation: vectors of real numbers from search domain

S = [a1,b1]× [a2,b2]× . . .× [av ,bv ]

I Fitness scaling: ( f → fitness > 0 )
I Linear:

fitness(xi) = fitnessi = f − fi ≥ 0

I Proportional:

fitnessi =


(

f +f

2 − fi

)
if f ≥ 0(

f +f

2 − fi

)
+ f if f < 0

I Rank: sort in ascending order, then

fitness =
1√

i
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Backup Slides

GATool

Evolutionary Operators and Selection

I Genetic operators:
I Elitism (preservation), number of elite
I Uniform mutation, Gaussian mutation (exploration), mutation rate
I Continuous crossover (exploitation)

I Selection:
I Stochastic Uniform
I Roulette Wheel
I Tournament
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Backup Slides

GATool

Elitism
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GATool

Evolutionary Operators: Crossover

xc = xp,w + β(xp,b − xp,w)
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GATool

Evolutionary Operators: Uniform Mutation

pc — mutation rate, xj,m = rand[aj ,bj ]
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GATool

Evolutionary Operators:Gaussian Mutation

xm = x + ∆x

∆xj ∼ N (µ, σ2) = N
(

0,
bj − aj

2

)
if adaptive:

σ2 = σ2(g) =
(

1− α g
gmax

)
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GATool

Selection: Stochastic Uniform and Tournament
Stochastic Uniform

Sk =
∑k

i=1 fitnessi, k = 1,N , h = SN
Nselect

, t1 = rand[0,h]

tj = t1 + (j − 1)h, j = 2,Nselect.

Tournament
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GATool

Selection: Roulette Wheel
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Statistics and Stopping Criteria

Diversity!

I Statistics:
I Objective function values range: ∆f = f − f
I Average function value over population
I Average distance between population members (estimated, sampling:

5-10%)
I Improvements from generation to generation

I Stopping criteria:
I Maximum number of generations
I Maximum number of stall generations + tolerance
I Desired objective function value
I Time limit
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GATool

Types of Noise

I Static: the function values contain errors but those errors remain the
same every time the function is evaluated:

f (x) = ftrue(x) + ∆f (x), ∀x.

I Dynamic: the function values contain errors that change every time the
function is evaluated:

f (x) = ftrue(x) + rand(−∆f (x),+∆f (x)),

where rand is a random number whose distribution is specified by the
considered problem. For simplicity here we consider only uniformly
distributed random numbers.
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Static Noise Example

Test problems: main function + noise function
Sphere function:

f (x) =
n∑

i=1

x2
i

Rastrigin function:

f (x) = 10n +
n∑

i=1

(
x2

i − 10 cos(2πxi)
)
.

Same global minimum: x∗ = 0, f (0) = 0
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GATool

GATool Results, Population = 10*dim = 50, 100 Runs

(o) Sphere, avg. time = 4.09 sec (p) Rastrigin, avg. time = 5.22 sec
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GATool

GATool Results, Population = 20*dim = 100, 100 Runs

Increase the population size!

Rastrigin, avg. time = 11.92 sec
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Dynamic Noise Example

Elitism does not work!

(q) No noise (r) Dynamic noise

Figure: GATool, 5-dim Sphere, population size 50. Generation number versus∑v
i=1(x∗i − xi,true), where x∗ — the best minimizer found by GATool, xtrue — the true

global minimizer (in this case 0), noise from the [−1, 1] range



Evolutionary Optimization Methods for Accelerator Design

Backup Slides

GATool

Averaging Strategy

x∗ = x∗ =
1

g2 − g1 + 1

g2∑
i=g1

x∗i , 1 ≤ g1 ≤ g2 ≤ gmax.

typically g1 = 5 . . . 20

generation Euclidean distance to minimizer
current averaged

100 0.18567 0.22973
200 0.17075 0.31166
500 0.13479 0.07508
1000 0.21228 0.06281
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COSY-GO Hybridization

COSY-GO Rigorous Global Optimization Package:
Principles

I Stack of boxes, branch-and-bound method
I Taylor Model Methods: if f ∈ C n+1(D) then P — Taylor polynomial at

x0 ∈ D up to order n and I — remainder error bound interval, then
Taylor Model of the order n:

f (x) ∈ P(x, x0) + I , ∀x ∈ D.

I Naive Bounding: evaluate P in interval arithmetic, add I
I Linear Dominated Bounder (LDB): linear part dominates, bound linear

part, use to reduce domain
I Quadratic Fast Bounder (QFB): in the neighborhood of the minimum,

Hessian is positive definite

P + I = (P −Q) + I + Q =⇒ l(P + I ) = l(P −Q) + l(I ) + l(Q)

If we now choose Q such that Q = Qx0 = 1
2 (x − x0)TH(x − x0) ≥ 0, then

l(Q) = 0. If we choose x0 to be a minimum of P2, then lower bound is
dominated by orders ≥ 3.
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COSY-GO Hybridization

COSY-GO Rigorous Global Optimization Package:
Algorithm (step 1)

1. A lower bound is obtained by applying the various available bounding schemes

sequentially in the order described below. If the obtained lower bound is below

the cutoff value, the box is eliminated, otherwise it is bisected. Each subsequent

method is applied only if the previous one fails. The following bounding methods

are used:

a) Simple interval bounding of the function f .

b) Naive Taylor model bounding based on the evaluation of the Taylor polynomial

P in interval arithmetic.

c) LDB bounding. If fails, the LDB domain reduction is performed.

d) QFB bounding, if the quadratic part of the P is positive definite.
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COSY-GO Hybridization

COSY-GO Rigorous Global Optimization Package:
Algorithm (step 2)

2. The cutoff value is heuristically updated using following methods:

a) The result of the function evaluation at the midpoint of the current box.

b) The linear and quadratic parts of P are utilized to obtain a potential

cutoff update.

better cutoff =⇒ more boxes eliminated =⇒ cheaper/faster method
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COSY-GO Hybridization

Example of the Rigorous Global Optimization

Global optimization of the spacecraft trajectories: pruned search space in
the epoch/epoch plane (courtesy of Roberto Armellin)
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COSY-GO Hybridization

Problems of the Global Optimization with COSY-GO

V = dv M =
(n + v)!

n!v!

(a) Search space volume for different initial
volumes

(b) Number of monomials for different ex-
pansion orders
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COSY-GO Performance for Different Dimensions

Problem Dimension
2 3 5 7 9

Paviani, NO = 8 V 6.30e+1 5.11e+2 3.27e+4 2.09e+6 1.33e+8
t 0.04 0.19 7.43 290.17 13524.51

CosExp, NO = 5 V 6.40e+1 5.12e+2 3.27e+4 2.09e+6 1.34e+8
t 0.03 0.08 1.19 24.6 337.31

SinSin, NO = 8 V 4.00 8.00 3.20e+1 1.28e+2 5.12e+2
t 0.17 1.37 395.53 7677.42 -.-

An, NO = 2 V 2.50e-1 1.25e-1 3.13e-2 7.81e-2 1.95e-3
t 0.02 0.04 0.05 0.03 0.04
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COSY-GO Hybridization

GATool Performance for Different Dimensions,
Population = dim*100

Problem Dimension
2 3 5 7 9

Paviani
V 6.30e+1 5.11e+2 3.27e+4 2.09e+6 1.33e+8
t 34.25 114.64 366.69 750.87 1301.53
Q 3.69e-6 1.89e-6 4.04e-5 8.37e-5 1.32e-3

CosExp
V 6.40e+1 5.12e+ 3.27e+4 2.09e+6 1.34e+8
t 29.15 78.72 302.23 571.32 2123.57
Q 3.99e-15 1.92e-10 9.54e-1 9.86e- 9.96e-1

SinSin
V 4.00 8.00 3.20e+1 1.28e+2 5.12e+2
t 16.31 12.86 135.68 385.06 685.15
Q 0.00 4.66e-7 3.32e-7 1.91e-6 2.16e-6

An
V 2.50e-1 1.25e-1 3.13e-2 7.81e-2 1.95e-3
t 11.14 27.01 239.82 454.95 822.86
Q 1.11e-16 6.87e-5 9.47e-5 1.11e-3 1.85e-3
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GATool Performance for Different Dimensions,
Population = dim*10

Problem Dimension
2 3 5 7 9

Paviani
V 6.30e+1 5.11e+2 3.27e+4 2.09e+6 1.33e+8
t 0.89 2.33 8.48 16.10 27.24
Q 1.16e-2 2.45e-2 1.68e-2 1.78e-1 3.02e-2

CosExp
V 6.40e+1 5.12e+2 3.27e+4 2.09e+6 1.34e+8
t 0.86 1.52 4.44 12.13 26.12
Q 7.13e-1 8.50e-1 9.54e-1 9.86e-1 9.96e-1

SinSin
V 4.00 8.00 3.20e+1 1.28e+2 5.12e+2
t 0.27 1.38 4.40 15.36 33.83
Q 3.62e-2 9.13e-3 5.12e-3 9.91-4 2.82-4

An
V 2.50e-1 1.25e-1 3.13e-2 7.81e-2 1.95e-3
t 0.49 0.83 10.44 21.25 44.62
Q 1.16e-3 1.27e-2 1.79e-3 9.25e-4 2.50-4
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COSY-GO Hybridization

GATool Time of Execution and Quality Scaling,
Different Population Sizes

(c) Time scaling (d) Result quality scaling

Rastrigin’s function, one random run
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COSY-GO Hybridization

COSY-GO + GATool Interaction Mechanism

> GATool searches in a box and returns cutoff update

> COSY-GO uses cutoff value, performs non-rigorous and rigorous box elimination

> GATool is restarted using updated information about the search domain

and returns new, better cutoff update.

> COSY-GO uses cutoff value, performs non-rigorous and rigorous box elimination

...
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COSY-GO Hybridization

Boxes Considered During COSY-GO Rigorous
Minimization of the 2-dimensional Rosenbrock’s
Function

100 runs, 10-dimensional Rosenbrock’s function
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COSY-GO Hybridization

GATool Performance, [−5, 10]10, V = 5.67 · 1011

100 runs, 10-dimensional Rosenbrock’s function
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COSY-GO Hybridization

GATool Performance, [−1.5, 1.5]10, V = 5.9 · 104

100 runs, 10-dimensional Rosenbrock’s function
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COSY-GO Hybridization

GATool Performance, [0, 1.5]10, V = 5.76 · 101

100 runs, 10-dimensional Rosenbrock’s function
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COSY-GO Hybridization

GATool Performance, [0.5, 1.5]10, V = 1.0 · 100

100 runs, 10-dimensional Rosenbrock’s function
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COSY-GO Hybridization

GATool Performance, [0.7, 1.3]10, V = 0.6 · 10−2

100 runs, 10-dimensional Rosenbrock’s function
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COSY-GO Hybridization

Conclusions

I GATool is designed and implemented as a hybrid of the best features of
existing EAs

I Performance is assessed on the test problems (later on real-life
problems from Accelerator Physics)

I Noise handling strategies are suggested and tested
I COSY-GO rigorous global optimizer interaction scheme is suggested,

ground of the proposition is studied by experiments
I Dependence of the computational time and quality is studied and

compared to the one of COSY-GO
I Consistency of the results, i.e. robustness of the methods is demonstrated

on examples
I Increase of the result quality with the domain reduction is demonstrated on

example
I Future research:

I Implementation of the hybrid algorithm and testing
I More tests
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COSY-GO Hybridization

Constrained Optimization with Evolutionary Algorithms

Challenges

I Not originally designed to handle constraints: for unconstrained
optimization fitness, for constrained — ?

I Keep or eliminate unfeasible members?
I If keep, how to compare feasible and unfeasible?
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COSY-GO Hybridization

Constrained Optimization with Evolutionary Algorithms

Evolutionary Algorithm (repeated)

Generate initial population, evaluate fitness

While stop condition not satisfied do

Produce next population by

Selection

Recombination

Evaluate fitness

End while
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COSY-GO Hybridization

Constrained Optimization with Evolutionary Algorithms

Methods

I Killing (reproduction)
I Penalty Functions (fitness evaluation)
I Special Genetic Operators (recombination)
I Selection (selection)
I Repairing (reproduction)
I Other methods (combined, one-by-one satisfaction, homomorphous

mapping, co-evolution, Immune System simulation)
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COSY-GO Hybridization

Constrained Optimization with Evolutionary Algorithms

Penalty Function Methods Idea

Replace constrained minimization problem with unconstrained minimization
problem with augmented objective function(s) so that its unconstrained
minimum is the same as constrained minimum of the original problem

Penalty functions: Pj(hj(x)), j = 1,n
Unconstrained multi-objective minimization problem:

x∗ = arg min
x∈S

G(x),

where G(x) =
(

P1(h1(x)),P2(h2(x)), . . . ,Pn(hn(x)), f (x)
)T Unconstrained

single-objective minimization problem

x∗ = arg min
x∈S

ϕ(x),

where ϕ = ϕ
(

G(x)
)

is the function that combines the original objective
function and penalty functions into a single objective function
(‖ϕ(x)− f (x)‖ −→ 0 as x→ F )
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COSY-GO Hybridization

Constrained Optimization with Evolutionary Algorithms

Penalty Functions

I Exterior (barrier functions): Pj(z) = − 1
hj(x)

I Interior (power penalties): Pa
j (hj(x)) = (max{0,hj(x)})a

Combining function:

ϕ(x) = f (x) +
n∑

j=1

wjPj(hj(x)).

SUMT method:

ϕ(x) = f (x)− r
n∑

j=1

1
hj(x)

Any unconstrained minimization method (frequently used combination,
a = 2):

ϕ(x) = f (x) +
n∑

j=1

(max{0,hj(x)})2
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Constrained Optimization with Evolutionary Algorithms

Exterior Penalty Function Example

(e) Inequality constraint function (f) Power penalty for inequality constraint
function
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Constrained Optimization with Evolutionary Algorithms

Penalty vs Distance

F =
{

x
∣∣‖x‖ ≤ 1

}
, x ∈ [−5, 5]2

Figure: (left to right) P0, P1, d(x,F )



Evolutionary Optimization Methods for Accelerator Design

COSY-GO Hybridization

Constrained Optimization with Evolutionary Algorithms

Exterior Penalty Function Types for EAs

I Levels of Violation

ϕ(x) = f (x) +
n∑

j=1

Rj
(

hj(x)
)

P2(hj(x))

I Multiplicative
ϕ = f (x)P(x)

I Dynamic

ϕ(x) = f (x) + (Ck)α
n∑

j=1

Pβ(hj(x))

ϕ(x) = f (x) +
1

2τk

∑
j∈A

P2(hj(x))

I Adaptive
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Constrained Optimization with Evolutionary Algorithms

Motivation

I Cutoff updates for COSY-GO constrained rigorous global optimization
⇒ strong need for feasible points

I Problems with very expensive objective functions but much less
expensive constraint functions, constraints MUST be satisfied (physical
limitations)



Evolutionary Optimization Methods for Accelerator Design

COSY-GO Hybridization

Constrained Optimization with Evolutionary Algorithms

REPA Agorithm

If combined penalty > penalty tolerance

If N(0,1) < percent repaired

If succeeded x = REFIND(xu)

Repair succeeded, replace xu in population with x

Else

If succeeded x = REPROPT(xu)

Repair succeeded, replace xu in population with x

Else

Repair failed

End if

End if

Else

Repair skipped

End if

Else

Repair not needed

End if
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Constrained Optimization with Evolutionary Algorithms

REFIND Agorithm

Find feasible individuals from the current population

R = {xf ,1, xf ,2, . . . , xf ,N}
If at least one feasible individual is found

Find xf ∈ R such that d(xf , xu) = minx∈R d(x, xu)

Search for a feasible point along the line connecting xu and xf by solving

optimization problem λ∗ = arg minλ P(xu(1− λ) + λxf ),

P --- penalty function

If resulting penalty is within tolerance

Repair succeeded, return x = xu(1− λ∗) + λ∗xf

Else

Repair failed

End if

Else

Repair failed

End if
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Constrained Optimization with Evolutionary Algorithms

REPROPT Algorithm

Same as REFIND... however

I there are no feasible members in the population!
I all coordinates are parameters for projection (multi-dimensional

problem)⇒ increased complexity
I can do quasi-projection: project using relatively large penalty tolerance,

i.e. to the neighborhood of F
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Constrained Optimization with Evolutionary Algorithms

Example of the REPA Results, Large F
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Constrained Optimization with Evolutionary Algorithms

Example of the REPA Results, Small F
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Constrained Optimization with Evolutionary Algorithms

Constrained Optimization with Evolutionary Algorithms
Test Problems

synthetic problems g01–g13, real-life design problems tens, vess

Problem Difficulty n Obj. function ρ LI NI LE NE
g01 D 13 quadratic 0.0003 9 0 0 0
g02 D 20 nonlinear 99.9973 2 0 0 0
g03 D 10 nonlinear 0.0026 0 0 0 1
g04 A 5 quadratic 27.0079 4 2 0 0
g05 VD 4 nonlinear 0.0000 2 0 0 3
g06 A 2 nonlinear 0.0057 0 2 0 0
g07 A 10 quadratic 0.0000 3 5 0 0
g08 E 2 nonlinear 0.8581 0 2 0 0
g09 A 7 nonlinear 0.5199 0 4 0 0
g10 D 8 linear 0.0020 6 0 0 0
g11 E 2 quadratic 0.0973 0 0 0 1
g12 E 3 quadratic 4.7697 0 93 0 0
g13 VD 5 nonlinear 0.0000 0 0 1 2
vess A 4 quadratic 39.6762 3 1 0 0
tens E 3 quadratic 0.7537 1 3 0 0
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Constrained Optimization with Evolutionary Algorithms

Studies on Constraints Projection: Methodology
I Constraints from the test problems set, plus one

g1(x) = x2
1 + x2

2 − 1.12 = 0

h1(x) = x1 − 1 ≤ 0

h2(x) = −x1 − 1 ≤ 0

h3(x) = x2 − 1 ≤ 0

h4(x) = −x2 − 1 ≤ 0

I Projection methods from COSY Infinity (SIMPLEX, LMDIF,
ANNEALING), combined methods are combinations of standard
methods

I Combinations of power penalty functions a = 0, 1, 2
I Initial points generated randomly, uniformly distributed over

S = [−100, 100]v and S = [−1000, 1000]v

I For all methods the maximum number of steps is 1000, precision is
10−5

I Ranking by success rate with some emphasis put on the average
number of steps
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Constrained Optimization with Evolutionary Algorithms

Studies on Constraints Projection: Results,
S = [−100, 100]v

# I II III
method % succ steps method % succ steps method % succ steps

0 L+A(z, z) 100.0 82 L(z, z) 98.1 50 S+L(z, z) 100.0 70
1 L(z) 100.0 45 L:c(z) 98.67 94 L(z2 ) 100.0 234
2 L(z) 97.8 65 S+A:c(z2 ) 97.6 93 S+A:c(z) 97.0 94
3 S(z) 100.0 258 L+A(z) 100.0 270 S+L(z) 100.0 333
4 L(z) 100.0 19 L+A(z) 100.0 53 L(z2 ) 100.0 80
5 L(z2 + z) 10.1 938 - - - - - -
6 L(z) 99.9 83 L(z2 ) 99.6 121 S+L(z) 100.0 191
7 L(z) 100.0 122 L(z2 ) 99.3 342 - - -
8 L+A(z) 100.0 66 S+L(z) 100.0 67 L(z) 99.5 56
9 S:c(z2 ) 96.1 327 L+A(z2 ) 97.5 513 L+A(z) 89.6 373
10 L(z2 ) 81.9 386 S+L(z2 ) 76.0 501 L+A(z) 74.1 379
11 L(z) 100.0 20 S+L(z) 100.0 50 L+A(z) 100.0 56
12 S+L(z) 100.0 125 L+A(z) 100.0 132 S+L(z2 ) 100.0 210
13 L+A(z) 99.9 361 S+L(z) 98.3 327 L(z) 75.6 342
pres S+L:c(z2 ) 98.3 242 L+A(z) 91.6 141 L(z) 89.4 90
tens L(z2 ) 22.8 202 L(z) 20.7 329 S+A:c(z2 ) 25.1 902
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Constrained Optimization with Evolutionary Algorithms

Studies on Constraints Projection: Results,
S = [−100, 100]v

# I II III
method % succ steps method % succ steps method % succ steps

0 L+A(z, z) 100.0 82 L(z, z) 98.1 50 S+L(z, z) 100.0 70
1 L(z) 100.0 45 L:c(z) 98.67 94 L(z2 ) 100.0 234
2 L(z) 97.8 65 S+A:c(z2 ) 97.6 93 S+A:c(z) 97.0 94
3 S(z) 100.0 258 L+A(z) 100.0 270 S+L(z) 100.0 333
4 L(z) 100.0 19 L+A(z) 100.0 53 L(z2 ) 100.0 80
5 L(z2 + z) 10.1 938 - - - - - -
6 L(z) 99.9 83 L(z2 ) 99.6 121 S+L(z) 100.0 191
7 L(z) 100.0 122 L(z2 ) 99.3 342 - - -
8 L+A(z) 100.0 66 S+L(z) 100.0 67 L(z) 99.5 56
9 S:c(z2 ) 96.1 327 L+A(z2 ) 97.5 513 L+A(z) 89.6 373
10 L(z2 ) 81.9 386 S+L(z2 ) 76.0 501 L+A(z) 74.1 379
11 L(z) 100.0 20 S+L(z) 100.0 50 L+A(z) 100.0 56
12 S+L(z) 100.0 125 L+A(z) 100.0 132 S+L(z2 ) 100.0 210
13 L+A(z) 99.9 361 S+L(z) 98.3 327 L(z) 75.6 342
pres S+L:c(z2 ) 98.3 242 L+A(z) 91.6 141 L(z) 89.4 90
tens L(z2 ) 22.8 202 L(z) 20.7 329 S+A:c(z2 ) 25.1 902
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Studies on Constraints Projection: Results,
S = [−100, 100]v

# I II III
method % succ steps method % succ steps method % succ steps

0 L+A(z, z) 100.0 82 L(z, z) 98.1 50 S+L(z, z) 100.0 70
1 L(z) 100.0 45 L:c(z) 98.67 94 L(z2 ) 100.0 234
2 L(z) 97.8 65 S+A:c(z2 ) 97.6 93 S+A:c(z) 97.0 94
3 S(z) 100.0 258 L+A(z) 100.0 270 S+L(z) 100.0 333
4 L(z) 100.0 19 L+A(z) 100.0 53 L(z2 ) 100.0 80
5 L(z2 + z) 10.1 938 - - - - - -
6 L(z) 99.9 83 L(z2 ) 99.6 121 S+L(z) 100.0 191
7 L(z) 100.0 122 L(z2 ) 99.3 342 - - -
8 L+A(z) 100.0 66 S+L(z) 100.0 67 L(z) 99.5 56
9 S:c(z2 ) 96.1 327 L+A(z2 ) 97.5 513 L+A(z) 89.6 373
10 L(z2 ) 81.9 386 S+L(z2 ) 76.0 501 L+A(z) 74.1 379
11 L(z) 100.0 20 S+L(z) 100.0 50 L+A(z) 100.0 56
12 S+L(z) 100.0 125 L+A(z) 100.0 132 S+L(z2 ) 100.0 210
13 L+A(z) 99.9 361 S+L(z) 98.3 327 L(z) 75.6 342
pres S+L:c(z2 ) 98.3 242 L+A(z) 91.6 141 L(z) 89.4 90
tens L(z2 ) 22.8 202 L(z) 20.7 329 S+A:c(z2 ) 25.1 902
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Studies on Constraints Projection: Results,
S = [−1000, 1000]v

# I II III
method % succ steps method % succ steps method % succ steps

0 L+A(z, z) 100.0 106 L(z, z) 99.6 45 S+L(z, z) 100.0 90
1 L(z) 100.0 45 L:c(z) 98.5 97 L(z2 ) 100.0 278
2 L(z) 94.0 103 S+A:c(z) 78.8 302 S+A:c(z2 ) 78.6 301
3 S(z) 99.5 343 S+L(z) 99.9 466 L+A(z) 100.0 419
4 L(z) 99.9 41 L+A(z) 100.0 130 L(z2 ) 100.0 125
5 - - - - - - - - -
6 L(z) 99.5 116 L(z2 ) 98.4 183 S+L(z) 100.0 209
7 L(z) 100.0 129 L(z2 ) 97.2 514 - - -
8 L+A(z) 100.0 92 S+L(z) 100.0 91 L(z) 98.1 80
9 S:c(z2 ) 59.3 715 L+A(z2 ) 47.4 572 L+A(z) 25.4 913
10 L(z2 ) 77.8 445 S+L(z2 ) 74.3 540 L+A(z) 66.6 453
11 L(z) 99.9 25 S+L(z) 99.9 69 L+A(z) 100.0 79
12 S+L(z) 100.0 171 L+A(z) 100.0 187 S+L(z2 ) 100.0 295
13 L+A(z) 98.3 472 S+L(z) 98.1 502 L(z) 66.6 542
pres S+L:c(z2 ) 93.5 268 S:c(z2 ) 93.3 123 S:c(z) 92.1 121
tens L(z2 ) 4.6 196 L(z) 2.5 168 S+A:c(z2 ) 15.3 984
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Studies on Constraints Projection: Results,
S = [−1000, 1000]v

# I II III
method % succ steps method % succ steps method % succ steps

0 L+A(z, z) 100.0 106 L(z, z) 99.6 45 S+L(z, z) 100.0 90
1 L(z) 100.0 45 L:c(z) 98.5 97 L(z2 ) 100.0 278
2 L(z) 94.0 103 S+A:c(z) 78.8 302 S+A:c(z2 ) 78.6 301
3 S(z) 99.5 343 S+L(z) 99.9 466 L+A(z) 100.0 419
4 L(z) 99.9 41 L+A(z) 100.0 130 L(z2 ) 100.0 125
5 - - - - - - - - -
6 L(z) 99.5 116 L(z2 ) 98.4 183 S+L(z) 100.0 209
7 L(z) 100.0 129 L(z2 ) 97.2 514 - - -
8 L+A(z) 100.0 92 S+L(z) 100.0 91 L(z) 98.1 80
9 S:c(z2 ) 59.3 715 L+A(z2 ) 47.4 572 L+A(z) 25.4 913
10 L(z2 ) 77.8 445 S+L(z2 ) 74.3 540 L+A(z) 66.6 453
11 L(z) 99.9 25 S+L(z) 99.9 69 L+A(z) 100.0 79
12 S+L(z) 100.0 171 L+A(z) 100.0 187 S+L(z2 ) 100.0 295
13 L+A(z) 98.3 472 S+L(z) 98.1 502 L(z) 66.6 542
pres S+L:c(z2 ) 93.5 268 S:c(z2 ) 93.3 123 S:c(z) 92.1 121
tens L(z2 ) 4.6 196 L(z) 2.5 168 S+A:c(z2 ) 15.3 984
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Studies on Constraints Projection: Results,
S = [−1000, 1000]v

# I II III
method % succ steps method % succ steps method % succ steps

0 L+A(z, z) 100.0 106 L(z, z) 99.6 45 S+L(z, z) 100.0 90
1 L(z) 100.0 45 L:c(z) 98.5 97 L(z2 ) 100.0 278
2 L(z) 94.0 103 S+A:c(z) 78.8 302 S+A:c(z2 ) 78.6 301
3 S(z) 99.5 343 S+L(z) 99.9 466 L+A(z) 100.0 419
4 L(z) 99.9 41 L+A(z) 100.0 130 L(z2 ) 100.0 125
5 - - - - - - - - -
6 L(z) 99.5 116 L(z2 ) 98.4 183 S+L(z) 100.0 209
7 L(z) 100.0 129 L(z2 ) 97.2 514 - - -
8 L+A(z) 100.0 92 S+L(z) 100.0 91 L(z) 98.1 80
9 S:c(z2 ) 59.3 715 L+A(z2 ) 47.4 572 L+A(z) 25.4 913
10 L(z2 ) 77.8 445 S+L(z2 ) 74.3 540 L+A(z) 66.6 453
11 L(z) 99.9 25 S+L(z) 99.9 69 L+A(z) 100.0 79
12 S+L(z) 100.0 171 L+A(z) 100.0 187 S+L(z2 ) 100.0 295
13 L+A(z) 98.3 472 S+L(z) 98.1 502 L(z) 66.6 542
pres S+L:c(z2 ) 93.5 268 S:c(z2 ) 93.3 123 S:c(z) 92.1 121
tens L(z2 ) 4.6 196 L(z) 2.5 168 S+A:c(z2 ) 15.3 984
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Percent Successful Runs, Different Methods

Problem Diff. v n Success Rate (%)
Killing Killing+Penalty Anneal. Penalty REPA

G01 D 13 9 2 3 100 9
G02 D 20 2 100 100 100 100
G03 D 10 1 3 2 100 100
G04 A 5 6 100 100 99 100
G05 VD 4 5 0 0 0 100
G06 A 2 2 23 2 54 99
G07 A 10 8 0 0 100 100
G08 E 2 2 100 100 100 100
G09 A 7 4 100 100 100 100
G10 D 8 6 10 0 0 11
G11 E 2 1 12 1 100 99
G12 E 3 1 100 95 100 100
G13 VD 5 3 0 0 76 100
tens E 3 4 96 44 89 100
vess A 4 4 100 100 100 100
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Summary of the performance, REPA method, after
150 generations

Prob. Optimum Best Median Mean Worst
G01 -15 -14.407890 -14.120216 -13.277590 -6.673952
G02 -0.803619 -0.780622 -0.698852 -0.694653 -0.583719
G03 -1 -0.987591 -0.9559559 -0.9661996 -0.378451
G04 -30665.539 -30663.677834 -30625.175701 -30619.883212 -30511.318
G05 5126.4981 5126.498109 5126.517730 5126.67221 5130.978
G06 -6961.81388 -6961.830259 -6601.428949 -6111.785535 -3531.262
G07 24.3062091 25.664348 28.512014 28.804470 35.3144229
G08 -0.095825 -0.0958250 -0.09582496 -0.09311891 -0.0291434
G09 680.6300573 680.8126323 681.5472870 681.768380 685.1725065
G10 7049.3307 7097.356559 8713.695245 9080.98370 11245.061
G11 0.75 0.7500003 0.750788 0.7551577 0.8292849
G12 -1 -0.999999 -0.999999 -0.9999998 -0.999996
G13 0.0539498 0.05395041 0.05398875 0.05409692 0.05900387
tens 0.012681 0.01268532 0.013211 0.01546248 0.1070929
vess 6059.946341 8825.1065735 10004.415854 11346.495914 40395.1935



Evolutionary Optimization Methods for Accelerator Design

COSY-GO Hybridization

Constrained Optimization with Evolutionary Algorithms

I G01: high-dimensional (13) and has the largest number of constraint
functions (9)

I Decreasing the projection penalty tolerance to 1 (from default 10−5) and
increasing the maximum allowed number of steps for projection to 70
(from default 50) we can restore the success rate up to 100% and
increase the quality of results to

-14.957892

-14.371071

-14.327610

-13.125392
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Conclusions

I REPA method has performance that is comparable to the one of
existing methods

I On test problems G05, G13 considered VERY DIFFICULT it shows
superior performance

I Method is not tied to a particular flavour of EA, can be easily extended
and modified for the problem

I However... large number of parameters⇒ flexibility for the price of
possibly expensive fine-tuning

I For the standard test problems set performance of REPROPT is
assessed, default parameters selected

I Future directions:
I More tests
I Integration with COSY-GO
I Extensions: other optimizers for projectoin, feasible elitism (REFIND much

less expensive!)
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